Глава 5: Конфиденциальная информация — тоже тайна

5.1. Устройства и способы получения информации

Всю информацию по степени защищенности, можно разделить на секретную, для служебного пользования и несекретную. Любые серьезные мероприятия начинаются со сбора информации для ее дальнейшего анализа и принятия решения. Например, в бизнесе — это анализ рынка, информация о конкурентах, об их сильных и слабых сторонах, информация о новейших разработках в сфере бизнеса и т.п. Таким образом, если вы бизнесмен, то обязательно обладаете информацией, которая необходима вашим конкурентам. Рано или поздно, вы столкнетесь с промышленным шпионажем (этим в той или иной степени занимаются все фирмы). Промышленный шпионаж подразумевает сбор открытой и закрытой информации о вас и о вашей фирме.

В наше неспокойное время вы можете явиться объектом шантажа, если конкуренты обошли вас по части шпионажа и не уважают закон. Естественно, что шантаж подразумевает наличие секретной компрометирующей информации. Вспомните историю гражданина Корейко А. И., проживавшего в городе Черно-морске в 1928 году («Золотой теленок» Ильфа и Петрова).

Вас могут прослушивать из простого любопытства — чужая личная жизнь до сих пор является объектом пристального внимания некоторых людей.

Современный деловой человек не может отмахиваться от проблем доступа к закрытой информации и сокрытия своей информации. Естественно, не рекомендуется использовать криминальные пути достижения своих целей — заниматься шпионажем для шантажа и вторжения в личную жизнь граждан. Но обязательно необходимо представлять, как это могут сделать другие по отношению к вам.

Многие предприниматели превращают свои дом"» и квартиры в офисы, где проводят деловые встречи, работают с компьютером, факсом, наивно полагая, что их дом — надежная крепость. С помощью современных средств шпионажа, которые приобрести не составляет труда, внедриться в компьютерную базу данных или прослушать незащищенный офис проще, чем вы думаете. Рассмотрим основные методы съема информации и как с этим бороться.

Создание и совершенствование современных электронных устройств шпионажа привело к тому, что даже самый совершенный и секретный тайник не в состоянии обезопасить вас от утечки информации, содержащейся в хранимых документах.

В качестве примера вспомним известный советский боевик «Новые приключения Неуловимых». В сейфе у полковника Кутасова хранилась секретная карта дислокации частей Белой армии. Для того чтобы взглянуть на нее, командиры дивизий были вынуждены каждый раз приезжать в штаб лично к Кутасову. Считалось, что это гарантирует 100% сохранность секретной информации. Однако, если бы «Неуловимые» воспользовались современными техническими средствами, например, Яшка Цыган под видом электрика вмонтировал бы в плафон над столом Кутасова телекамеру или Данька произвел фотосъемку с крыши соседнего дома, а Валерка прикрепил «жучок» к эполетам штабс-капитана Овеч-кина, то секретная информация была бы похищена даже без ведома начальника контрразведки. Как видно из приведенного примера, тайник не способен защитить информацию, если ею регулярно пользуется владелец.

5.1.1. Способы получения информации

Приведем перечень способов получения информации о конкурентах, опубликованный доктором Уортом Уайдом в журнале «Chemical Engineering» еще в 1965 г. Однако этот перечень не потерял свою актуальность и в настоящее время. Первые семь способов являются законными, остальные — незаконными.

1. Публикации конкурентов и отчеты о процессах, полученные обычными путями.

2. Сведения, данные публично бывшими служащими конкурента.

3. Обзоры рынков и доклады инженеров-консультантов.

4. Финансовые отчеты.

5. Устраиваемые конкурентами ярмарки и выставки и издаваемые ими брошюры.

6. Анализ изделий конкурентов.

7. Отчеты коммивояжеров и закупочных отделов.

8. Попытки пригласить па работу специалистов, работающих у конкурента, и заполненные ими с этой целью вопросники.

9. Вопросы, осторожно задаваемые специалистам конкурента на специальных конгрессах.

10. Непосредственное тайное наблюдение

11 Притворное предложение работы служащим конкурента без намерения брать их на работу с целью выведать у них информацию

12 Притворные переговоры с конкурентом якобы для приобретения лицензии на один из патентов

13 Использование профессиональных шпионов для получения информации

14 Сманивание с работы служащих конкурента для получения информации

15 Посягательство на собственность конкурента.

16 Подкуп сотрудников закупочного отдела конкурента или его служащих

17 Засылка агентов к служащим или специалистам конкурента.

18 Подслушивание разговоров у конкурента.

19 Похищение чертежей, образцов, документов и т. д

20 Шантаж и различные способы давления, разумеется, конкурент прибегает

к тем же средствам.

Для тою чтобы грамотно провести мероприятия по обнаружению утечки служебной и друюй информации и установке специальных средств защиты, необходимо чегко установить, по каким каналам вообще возможно получение информации

Перечислим их:

> прослушивание телефонных аппаратов;

> копирование документов,

> дистанционное звуковое прослушивание,

> подкуп должностных лиц,

> прямой доступ к компьютерным банкам данных,

> копирование носителей информации,

> расшифровка радиоизлучения компьютеров, факсов, телетайпов,

> визуальный контроль помещений (через окна);

> слуховой контроль через резонирующие перегородки, стекла, стены, бата реи центрального отопления, > установка микронередатчиков в помещениях и автомобилях;

> индуктивный съем информации с любых неэкранированных, проводни ков впугри помещений (линий связи, электропитание, сигнализация),

>  вхождение в доверие к родственникам, друзьям и детям объекта наблюдения

Радиомикрофоны

В настоящее время широкое распространение получили радиомикрофоны или, как их еще называют, радиозакладки, представляющие собой микропередатчики Радиус действия их, как правило, не превышает нескольких сот метров

Современная элементная база позволяет создавать эти устройства даже в домашних условиях

Слуховой контроль

Вести слуховой контроль можно остронаправленными микрофонами, имеющими игольчатую диаграмму направленности. С помощью такого микрофона можно прослушать разговор на расстоянии до 1 км в пределах прямой видимости.

Прослушивание телефонных разговоров

Прослушивание телефонных разговоров может вестись несколькими методами:

> непосредственное подключение к телефонной линии записывающей аппаратуры. Подключение возможно в распределительной коробке;

> подкуп обслуживающего персонала па АТС для установки записывающей аппаратуры;

> телефоны, где в качестве вызывного устройства используется электромагнитный звонок, можно прослушать через звонковую цепь. Это возможно в том случае, если трубка лежит на аппарате;

> прослушивание через микрофон телефонного аппарата;

> еще одним из устройств для прослушивания может служить радиозакладка, питаемая энергией самой линии. Это устройство удобно тем, что не требует замены питания и установив его единожды, пользоваться им можно бесконечно долго. Работает оно только при снятой трубке. Существует еще один способ прослушивания, для осуществления которого необходимо в прослушиваемый телефон встроить радиомикрофоп — «жучок». Если набрать номер этого телефона и пустить в линию звуковой код, то «жучок» имитирует поднятие трубки и подключает микрофон к линии.

Использование лазерной техники

Если в вашем офисе оконные стекла не защищены, то разговор за такими окнами можно прослушать путем детектирования отраженного от стекла лазерного луча. Звуковые колебания в помещении приводят к синхронной вибрации стекол, а они, в свою очередь, модулируют отраженный от него лазерный луч.

Постоянное наблюдение

Необходимо помнить о том, что, если вы назначили деловую встречу в отеле или гостинице, помер, в котором вы остановились, можно прослушать из соседнего с помощью чувствительной аппаратуры. Розетки, батареи центрального отопления, вентиляционные шахты, топкие перегородки — вот ваши враги.

За движущимся автомобилем контроль можно вести, только если раньше в нем был установлен радиомикрофон. На длительных остановках беседу можно прослушать направленным микрофоном при условии прямой видимости и опущенного стекла в автомобиле. Также можно воспользоваться лазерным микрофоном.

В кафе и ресторанах прослушивание можно осуществить направленным микрофоном или радиозакладкой. В таких случаях громкая музыка, как, впрочем, и шум льющейся воды, не спасает, так как у направленного микрофона очень узкая диаграмма направленности.

Получение информации с компьютера

Наиболее серьезной техникой оснащены те лица, которые стремятся получить несанкционированный доступ к банкам данных компьютеров. Для этого необходима специальная аппаратура с цифровой обработкой. Самое надежное внедрение можно осуществить путем непосредственного подключения к компьютерной сети. Это возможно лишь в том случае, если в здании компьютеры объединены в общую локальную сеть.

Снимать информацию с последующей обработкой можно, регистрируя излучения компьютера и его периферии, а также компьютерных линий. Во время работы компьютера в питающей сети наводятся сигналы, регистрируя которые после соответствующей обработки можно получить полную или частичную информацию о процессах, происходящих в памяти компьютера и его периферии. Для дистанционного снятия информации за счет побочного излучения компьютера и его периферии применяют высокочувствительные широкополосные приемники с последующей цифровой обработкой полученной информации. Проведите небольшой эксперимент: включите ваш компьютер и проведите перестройку радиоприемника в У KB диапазоне. Практически весь диапазон будет забит помехами от работающего компьютера и, если ваш IBM-совместимый или любой другой компьютер без соответствующей защиты, никто не сможет дать гарантию, что его не контролируют. Системы съема компьютерной информации невероятно сложны и требуют специальной аппаратуры аналоговой и цифровой обработки с применением компьютеров и определенного программного обеспечения.

5.1.2. Технические средства несанкционированного доступа к информации

Акустический контроль

К системам акустического контроля относится широкая номенклатура различных радиомикрофонов, назначением которых является съем информации и передача ее по радиоканалу.

Радиомикрофоны — это специальные устройства съема информации, кого-рые по своему исполнению бывают:

^ простейшие — непрерывно излучающие;

> с включением на передачу при появлении в контролируемом помещении разговоров или шумов;

^- дистанционно управляемые — включающиеся и выключающиеся дистанционно на время, необходимое для контроля помещения. Специальные устройства съема информации и передачи ее но радиоканалу можно классифицировать по следующим признакам:

> диапазону используемых частот (от 27 МГц до 1,5 ГГц и выше), > продолжительности работы (от 5 часов до 1 года),

> радиусу действия (от 15 м до 10 км);

> виду модуляции (AM, ЧМ, узкополосная ЧМ, однополосная AM, широко полосная шумолодобная).

Следует отметить, что в последнее время появились специальные устройства съема информации, использующие для передачи акустической информации так называемые «нетрадиционные каналы». К этим каналам можно отнести следующие:

> Устройства съема информации, ведущие передачу в инфракрасном диапазоне (ИК передатчики). Характеризуются такие изделия крайней сложностью их обнаружения. Срок непрерывной работы — 1—3 суток. Используют эти устройства, как правило, для увеличения дальности передачи информации и размещаются у окон, вентиляционных отверстий и т.п., что может облегчит задачу их поиска. Для приема информации применяют специальный приемник ИК диапазона, который обеспечивает надежную связь на расстоянии 10—15 м.

> Устройства съема информации, использующие в качестве канала передачи данных силовую электрическую сеть 127/220/380 В. Такие устройства (рис. 5.1)

101.jpg

Рис. 5.1. Подключение устройств съема информации к силовой электрической сети

встраиваются в электрические розетки, удлинители, тройники, бытовую аппаратуру и другие места, где проходит или подключается сеть. К основным достоинствам таких устройств можно отнести неограниченное время работы. Прием информации от таких устройств осуществляется специальными приемниками (рис. 5.2), подключаемыми к силовой сети, в радиусе до 300 м.

102.jpg

Рис. 5.2. Использование специальных приемников для съема информации через электрическую сеть

> Устройства съема информации с ее закрытием, использующие шифровку или преобразование частоты с различными видами модуляции. Попытка прослушать такое устройство даже очень хорошим сканирующим прием-пиком ни к чему не приведет — будет слышен лишь шум, указывающий только на наличие устройства съема информации.

> Устройства съема информации на основе лазерного микрофона, который позволяет на расстоянии до 300 м регистрировать колебания оконных стекол и преобразовывать их в звуковой сигнал.

Устройства съема информации, использующие "нетрадиционные каналы" передачи, чрезвычайно дороги и сложны в эксплуатации, поэтому использования их частными лицами маловероятно.

В тех случаях, когда нельзя установить устройства съема информации непосредственно на объекте, применяют стетоскопные микрофоны (рис. 5.3), которые позволяют прослушивать переговоры через твердую преграду (стену, стекло, корпус автомобиля и т.п.), причем, чем тверже и однороднее преграда, тем лучше они работают. Стетоскоп представляет собой вибродатчик с усилителем и головными телефонами (или устройством автоматической записи звука па магнитную ленту). С помощью стетоскопного микрофона можно осуществлять прослушивание разговоров через стену толщиной 1 м и более. Основным преимуществом такой системы является трудность ее обнаружения, т.к. стетоскоп-ный микрофон можно устанавливать в соседнем помещении.

103.jpg

Рис. 5.3 Использование стетоскопных микрофонов

Устройства съема информации устанавливаются с согласия хозяина помещения или без пего в специально подготовленные места с последующей их маскировкой либо встраиваются в предметы быта, интерьера или свободные полости помещения (рис. 5.4).

Контроль и прослушивание телефонных каналов связи

В последнее время одним из основных способов несанкционированного доступа к информации частного и коммерческого характера стало прослушивание телефонных переговоров. Для прослушивания телефонных переговоров используются следующие способы подключения:

104.jpg

Рис. 5.4. Возможные места установки устройств съема информации

> параллельное подключение к телефонной линии. В этом случае телефонные радиоретрансляторы труднее обнаруживаются, но требуют внешнего источника питания.

> последовательное включение телефонных радиоретрансляторов в разрыв провода телефонной линии (рис. 5.5). В этом случае питание телефонного радиоретранслятора осуществляется от телефонной линии и в эфир он выходит (т.е. начинает передачу) с момента подъема телефонной трубки абонементом.

Подключение телефонного радиоретранслятора может осуществляться как непосредственно к телефонному аппарату, так и на любом участке линии от телефона абонента до АТС. В настоящее время существуют телефонные радиоретрансляторы, позволяющие прослушивать помещение через микрофон лежащей трубки. Для этого на один провод телефонной линии подают сигнал от генератора высокочастотных колебаний, а к другому — подключают амплитудный детектор с усилителем. В этом случае высокочастотные колебания проходят через микрофон или элементы телефонного аппарата, обладающие «микрофонным эффектом», и модулируются акустическими сигналами прослушиваемого помещения. Промодулированный высокочастотный сигнал демодулируется амплитудным детектором и после усиления готов для прослушивания или записи.

105.jpg

Рис 5 5 Последовательное включение телефонного ретранслятора

Дальность действия т^кой системы из-за затухания ВЧ сигнала в двухпроводной. линии не превышает нескольких десятков метров Существуют системы прослушивания телефонных разговоров, не требующие непосредственного электронного соединения с телефонной линией Эти системы используют индуктивный способ (при помощи катушек) съема информации Они достаточно громоздки, поскольку содержат несколько каскадов усиления слабого НЧ сигнала и обязательный внешний источник питания Поэтому такие системы не нашли широкого практического применения

Для приема информации от телефонных радиотрансляторов используются такие же приемники, как в акустических устройствах съема информации по радиоканалу

В настоящее время появились системы перехвата факсовой и модемной связи, которые при использовании персонального компьютера со специальным программным обеспечением позволяют получить расшифровку информации Однако такие системы очень дорогие и пока не нашли широкого применения в нашей стране

Способы, которыми может вестись прослушивание телефонных линий и какая при этом используется аппаратура наглядно представлены на рис 5 6. Кратко рассмотрим эти способы

106.jpg

Рис 5 6 Схема возможных вариантов подключения к телефонной сети

Непосредственное подключение к телефонной линии

Непосредственное подключение к телефонной линии — наиболее простой и надежный способ получения информации. В простейшем случае применяется трубка ремонтника—телефониста, подключаемая к линии в распределительной коробке, где производится разводка кабелей. Чаще всего Это почерк «специалистов» нижнего звена уголовного мира (верхнее звено оснащено аппаратурой не хуже государственных секретных служб). Необходимо помнить, что АТС переключает линию на разговор при шунтировапии ее сопротивлением около 1 кОм Применение аппаратуры подслушивания с низкоомпым входным сопротивлением можно достаточно быстро обнаружить. Если вы услышите щелчки в линии или перепады громкости, — есть вероятность того, что вас пытаются прослушать не совсем профессиональным способом.

Подкуп персонала АТС

Подкуп обслуживающего персонала на АТС — весьма распространенный способ раскрытия ваших секретов. Особенно это касается небольших городов, где до сих пор используются старые декадно-шаговые АТС. Скорее всего, таким способом могут воспользоваться преступные группы либо конкурирующие фирмы.

Прослушивание через электромагнитный звонок

Телефонные аппараты, где в качестве вызывного устройства используется электромагнитный звонок, пока еще широко распространены в нашей стране. Звонок обладает свойством дуальности, то есть, если на электромагнитный звонок действуют звуковые волны, он начнет вырабатывать соответствующим образом модулированный ток. Амплитуда его достаточна для дальнейшей обработки. Эксперименты показали, что амплитуда ЭДС, наводимая в линии, для некоторых типов телефонных аппаратов может достигать нескольких милливольт. Корпус аппарата является дополнительным резонирующим устройством

Прослушивание через микрофон телефонного аппарата

Этот способ не является синонимом непосредственного подключения к линии. Он гораздо сложнее. Микрофон является частью электронной схемы телефонного аппарата: он либо соединен с линией (через отдельные элементы схемы) при разговоре, либо отключен от нее, когда телефонный аппарат находится в готовности к приему вызова (трубка находится на аппарате). На "первый взгляд, когда трубка лежит на аппарате, нет никакой возможности использовать микрофон в качестве источника съема информации. Но это только на первый взгляд. На рис. 5.7 приведена схема прослушивания помещения способом, называемым высокочастотным навязыванием.

Суть этого способа состоит в следующем. На один из проводов телефонной линии, идущий от АТС к телефонному аппарату ТА-2 (рис. 5.7), подаются колебания частотой 150 кГц и выше от генератора Г. К другому проводу линии подключается детектор, выполненный на элементах Cl, C2, VD1, VD2 и R1. Корпус передатчика (генератор Г) и приемника (детектор) соединены между собой или с общей землей, например с водопроводной трубой.

 

107.jpg

Рис. 5.7. Прослушивание через микрофон телефонного аппарата

Высокочастотные колебания через элементы схемы телефонного аппарата ТА-2 поступают на микрофон (даже если трубка ТА-2 опущена) и модулируются речью. Детектор приемника выделяет речевую информацию, которая усиливается до необходимого уровня и обрабатывается. Вследствие существенного затухания ВЧ сигнала в двухпроводной линии, дальность съема информации таким методом не превышает нескольких сотен метров.

Для защиты телефонного аппарата от снятия информации таким способом достаточно параллельно микрофону подключить конденсатор емкостью 0,01 — 0,05 мкФ. При этом последний будет шунтировать микрофон по высокой частоте и глубина модуляции ВЧ колебаний уменьшится более чем в 10 000 раз, что делает дальнейшую демодуляцию сигнала практически невозможной.

Перехват компьютерной информации, несанкционированное внедрение в базы данных

Стандартность архитектурных"-принципов построения оборудования и программного обеспечения определяют сравнительно легкий доступ профессионала к информации, находящейся в персональном компьютере (ПК). Ограничение доступа к ПК путем введения кодов не обеспечивает полной защиты информации. Включить компьютер и снять код доступа к системе не вызывает особых затруднений — достаточно отключить аккумулятор на материнской плате. На некоторых моделях материнских плат для этого предусмотрен специальный переключатель. Также у каждого изготовителя программы BIOS (AMI, AWARD и др.) есть коды, имеющие приоритет перед любыми пользовательскими, набрав которые можно получить доступ к системе. В крайнем случае, можно украсть системный блок компьютера или извлечь из него жесткий диск и уже в спокойной обстановке получить доступ к необходимой информации.

Другое дело, когда попасть в помещение, где установлен компьютер, не удается. В этом случае используют дистанционные способы съема информации. Естественно, они эффективны только тогда, когда компьютер включен. Существуют два способа дистанционного считывания информации:

Первый способ основан на приеме ВЧ наводок в силовую сеть, а второй — на приеме побочных электромагнитных излучений соединительных цепей ПК. Распространение побочных электромагнитных излучений за пределы контролируемой территории создает предпосылки для утечки информации, так как возможен ее перехват с помощью специальных технических средств контроля. В персональном компьютере основными источниками электромагнитных излучений являются монитор и соединительные цепи (устройства ввода и вывода информации). Утечке информации в ПК способствует применение коротких видеоимпульсов прямоугольной формы и высокочастотных коммутирующих сигналов.

Исследования показывают, что излучение видеосигнала монитора является достаточно мощным, широкополосным и охватывает диапазон метровых и дециметровых волн. Причиной мощного излучения является наложение радиосигнала на импульсы развертки изображения, вырабатываемые строчным трансформатором. При кажущейся сложности проблемы, аппаратура для этого вида коммерческой разведки достаточно проста (рис. 5.8) и изготавливается на базе обычного малогабаритного телевизора. Такие устройства позволяют на удалении 50 м получать устойчивую картинку — копию изображения, отображаемого в настоящий момент на экране монитора вашего ПК.

Для уменьшения уровня побочных электромагнитных излучений применяют специальные средства защиты информации; экранирование помещений, фильтрацию источников питания, дополнительное заземление, электромагнитное заземление, а также средства ослабления уровней нежелательных электромагнитных излучений и наводок при помощи различных резистивных и поглощающих согласованных нагрузок.

В последнее время все чаще говорят о несанкционированном внедрении в базы данных. Этот вид пиратства очень быстро развивается вследствие бурного

108.jpg

Рис. 5.8. Дистанционный съем информации с персонального компьютера

развития компьютеризации при обработке информации в коммерческих кругах с выходом информационных сетей в телефонную сеть общего пользования. Компьютерные взломщики, •«хакеры», не ограничиваются вопросами бесплатного получения коммерческой информации, — достаточно случаев вскрытия и перевода денежных счетов из одного банка в другой через информационную сеть общего пользования.

Скрытая фото- и видеосъемка при помощи специальной оптики

Не нужно обращаться к истории разведки, чтобы сделать вывод о том, что визуальное наблюдение является самым древним и очень эффективным методом сбора информации. В настоящее время для сбора информации могут использоваться миниатюрные скрытые и специальные (камуфлированные под обычные предметы) фото- и видеокамеры:

> миниатюрные (скрытые). Встраиваются в бытовую технику и передают видеоинформацию по кабелю или но ВЧ каналу при помощи телевизионного передатчика;

> специальные, т.е. замаскированные под бытовые предметы, например пачку

сигарет, кейс, книгу, наручные часы и т.п.

Аппаратура для скрытой фото- и видеосъемки, как правило, оборудуется специальными объективами и насадками:

> миниатюрными объективами, предназначенными для съемки через отверстия небольшого диаметра (до 5 мм);

> телескопическими объективами, позволяющими вести съемку с дальних расстояний. Такие объективы обладают высокой кратностью увеличения (до 1,5 тыс. крат);

> комуфляжпыми объективами, используемыми для скрытой съемки из различных бытовых предметов, например из кейсов;

> объективами, совмещенными с приборами ночного видения (с инфракрасной подсветкой), и предназначенными для проведения съемки в темное время суток.

В качестве примера оборудования для скрытого наблюдения рассмотрим миниатюрную телевизионную камеру JT-241s (рис. 5.9), которая позволяет сделать это наблюдение абсолютно незаметным, информативным и безопасным.

109.jpg

Рис. 5.9 Миниатюрная телевизионная камера JT-241s


1010.jpg

Рис. 5.10. Возможные варианты размещения аппаратуры скрытого наблюдения

Использование телекамеры JT-241s наиболее эффективно в системах охраны, системах телевизионного наблюдения, системах скрытого аудиовидеопрото-кола и т.н.

Сверхминиатюрный зрачок объектива позволяет вести наблюдение через отверстие диаметром 0,3—1,2 мм при угле поля зрения 110°, а высокая чувствительность (0,04 лк) —видеть в темноте лучше, чем человеческий глаз.

Малые размеры телекамеры (39х39х20 мм) позволяют установить ее в любые элементы интерьера: часы, книгу, картину, входную дверь, стену и т.п. (рис. 5.10).

Телекамера может быть оснащена дру»ими объективами с иным полем зрения.

Перечень техники фото- и видеосъемки можно было бы продлить, но вероятность ее использования частными лицами очень мала из-за сложности в эксплуатации и большой стоимости.

5.2. Обнаружение устройств съема информации

В 1915 году немцы установили электрический барьер вдоль границы между Бельгией и Голландией. Быстро убедившись, что постоянное пропускание тока в заграждении такой длины обходится очень дорого, они начали включать ток время от времени. Многие шпионы и пленные, пытавшиеся наудачу пройти через барьер, были убиты током. В конце концов была изготовлена резиновая одежда, предохраняющая от поражения электрическим током. Одежда была черного цвета, и поэтому носившие ее практически были невидимы с наступлением темноты. Было лишь одно неудобство: несколько комплектов такой одежды было добыто германской полицией и впоследствии всех, кто в такой одежде оказывался по соседству с заграждением или у кого вовремя обыска находили сходную одежду, почти наверняка расстреливали. В дальнейшем союзники вынуждены были прибегнуть к промышленному шпионажу, чтобы выяснить, в какой момент ток выключался.

В наше время, несомненно, в подобном случае применили бы специальные индикаторы. Из детективной литературы хорошо известно, что преступник всегда оставляет следы. Так же и любое техническое устройство вносит какие-то изменения в окружающее пространство.

И если задача разведки состоит в том, чтобы сделать эти изменения как можно более незаметными, то задача тех кто занят поиском подобной техники, состоит в том, чтобы по едва уловимым следам изменения физических параметров пространства обнаружить и обезвредить технические устройства и системы ведения разведки. Задача технической контрразведки усложняется тем, что, как правило, неизвестно, какое конкретное техническое устройство контроля информации применено. Поэтому работа но поиску и обезвреживанию технических средств наблюдения дает обнадеживающий результат только в том случае, если она проводится комплексно, т.е. обследуют одновременно все возможные пути утечки информации.

Приведем достаточно условную классификацию устройств поиска технических средств разведки:

I. Устройства поиска активного тина, т.е. исследующие отклик на какое-либо воздействие:

> нелинейные локаторы — исследуют отклик на воздействие электромагнитным полем;

> рентгенметры — просвечивание с помощью рентгеновской аппаратуры;

> магнитно-резонансные локаторы, использующие явление ориентации молекул в магнитном поле;

> акустические корректоры.

II. Устройства поиска пассивного типа:

> металлоискатели;

^ тепловизоры;

> устройства и системы поиска по электромагнитному излучению;

> устройства поиска по изменению параметров телефонной линии (напряжения, индуктивности, емкости, добротности);

> устройства поиска но изменению магнитного поля (детекторы записывающей аппаратуры).

В силу различных причин практическое применение нашли далеко не все из перечисленных технических средств Например, рентгеновская аппаратура очень дорога и громоздка и применяется исключительно специальными государственными организациями То же, но в меньшей степени, относится к магнитно-резонансным локаторам Тенловизоры, приборы, которые могут обнаруживать разницу температур, измеряемую сотыми долями градуса, могут регистрировать тепловую мощность порядка 1 мкВт. Эти, относительно дешевые приборы, в состав которых входит компьютер, могли бы стать очень эффективными и универсальными с точки зрения поиска технических средств коммерческой разведки, т к любое техническое средство при своей работе выделяет в окружающее пространство тепло Скорее всего, появление на рынке подобных устройств является делом не далекого будущего.

Более подробно остановимся на устройствах, относительно широко представленных на отечественном рынке Прежде всего, это пассивные устройства поиска, основанные па исследовании электромагнитного излучения приемники, сканеры, шумомеры, детекторы излучения инфракрасного диапазона, анализаторы спектра, частотомеры, измерительные панорамные приемники, селективные микровольтметры и т п

5.2.1. Специальные радиотехнические средства обнаружения

Для того, чтобы проверить свою квартиру или офис па наличие каких-либо радиотехнических средств, установленных у вас несанкционированно, или убедиться в том, что ваш телефон, компьютер, телевизор и другая бытовая техника не имеют побочных, а значит, нежелательных каналов излучения в радиочастотном диапазоне, совсем не обязательно обращаться к специалистам Эту работу можно выполнить и самостоятельно, достаточно иметь небольшой прибор — регистратор высокочастотных излучений, или сканер-обнаружитель (рис 511) Такие приборы широко представлены в торговых организациях и на радиорынках, но цены их довольно высоки

Регистратор высокочастотных излучений представляет собой сканирующий приемпик-обпаружитель сигналов маломощных передатчиков с реализацией алгоритма распознавания и селекции сигналов мощных станций радио- и телевизионного вещания, а также связных станций различных служб Сканер предназначен для обнаружения и локализации места установки акустических, телефонных и телевизионных миниатюрных передатчиков отечественного и зарубежного производства, проверки предметов, подозреваемых па наличие установленных закамуфлированных микропередатчиков Наличие возможности автоматического распознавания связных и вещательных станций позволяет максимально повысить относительную чувствительность сканера, что, в свою очередь, позволяет увеличить надежность обнаружения подслушивающих устройств Небольшие габариты, автономное питание и

111.jpg

Рис. 5.11. Сканер-обнаружитель

возможность изменения чувствительности позволяют проводить поисковые мероприятия в максимально сжатые сроки и с высокой надежностью.

Многофункциональный приемник широкого диапазона XPLORER

Многофункциональный тестовый и исследовательский приемник ближнего поля XPLORER (рис. 5.12) имеет оптимально подобранную максимальную чувствительность для обнаружения и приема сигнала па расстоянии большем, чем у аналогов (носимая радиостанция — до 400 м).

Малые габариты, вес, автономная работа от встроенных аккумуляторов в течении 8 часов и широкие функциональные возможности открывают для этого прибора широчайшую сферу применения: тестирование радиопередающего оборудования, исследования радиосигналов, поиск радиопередатчиков и многое другое.

XPLORER проверяет диапазон от 30 МГц до 2 ГГц менее чем за 1 с и позволяет автоматически обнаруживать активные передатчики в ближней зоне, демодулировать ЧМ сигналы и воспроизводить звук через встроенный громкоговоритель. Приемник имеет двухстрочный дисплей, в одной строке которого отображается частота принятого сигнала, а во второй — одна из характеристик сигнала: значение тона или кода CTCSS, DCS или DTMF, относительный уровень, ЧМ девиация (1 —10 кГц, 10—100 кГц), параметры LTR транкинга, а также широта и долгота в координатах системы GPS. Для удобства работы предусмотрены функции ручного сброса обнаруженной частоты, память на 500 значений

112.jpg

Рис. 5.12 Многофункциональный приемник XPLORER

час-ior. В память регистра обнаруженных частот автоматически вносятся не только значение частоты обнаруженного сигнала, но и время, дата, долгота и широга. Прибор имеет встроенные часы с собственной батарейкой.

XPLORER имеет последовательный интерфейс RS-232C.

Основные технические характеристики многофункционального приемника XPLORER:

Диапазон рабочих частот, ГГц ....................................................0,030—2

Модуляция:

тин ............................................................................................ ЧМ

девиация не более, кГц....................................................... ......... 100

Диапазон звуковых частот, кГц ................................................. 50—3000

Время сканирования всего диапазона частот не более, с ......................... 1

Вход:

сопротивление, Ом . ... ........................... ... ..................... ............50

чувствительность па частоте 100 МГц, дБм .......................... .... ...-59

чувствигельпость на частоте 1 ГГц, дБм......................................... -25

Индикация .............................. ..................................... захват сигнала

зарядка аккумулятора

Дисплей:

количество строк ............... ........................................................... 2

количество символов в строке .....................................16с подсветкой

Питание:

встроенный никель-кадмиевый аккумулятор, В/мАхч .............. 7,2/850

универсальный адаптер, В/А ................................................ ... 12/2

Последовательный порт ........................................ CI-V (ТТЛ), RS-232C

Прибор оборудован гнездом для подключения головных телефонов, а также имеет гнездо управления магнитофоном.

Счетчик частоты CUB

Минисчетчик CUB — идеальное средство для поиска активных передатчиков (рис. 5.13).

Данный прибор производства фирмы Optoelectronics является усовершенствованной версией предыдущей модели 3300 MiniCounter, одного из самых популярных и дешевых приборов для измерений и тестирования радиооборудования.

Новый CUB имеет цифровой фильтр и функцию автозахвата. При использовании цифрового фильтра внутренний микропроцессор оценивает полученные результаты и итерирует случайные результаты измерения, так что при работе на дисплее появляются не случайные числа, а реально измеренные величины Функция автозахвага удерживает на дисплее значение настолько долго, насколько вам это понадобится — может пройти несколько дней до тех пор, пока полученное значение будет записано па бумаге.

Прибор имеет высокоскоростной вход 0,001 с и 8 переключаемых значений скорости счета, что делает его более быстрым и точным, но сравнению с моделью 3300, имеющей стандартные значения этих параметров: 0,01 с и 6 скоростей счета. Optoelectronics CUB стал более сложным в схемотехническом отношении, но остался таким же простым в управлении, как и его предшественник.

113.jpg

Рис. 5.13 Счетчик частоты CUB

Имея всгроенные никель-кадмиевые аккумуляторы, CUB может работать 10 часов без подзарядки, предоставляя вам полную свободу действий. Вы можете практически целый день работа гь с прибором, будь вы в чистом ноле или в лаборатории.

Стоит особенно остановиться на чувствительности прибора. При усовершенствовании счетчика модели 3300 была использована так называемая концепция максимальной чувствительности, поэтому CUB имеет предельное для широкоди-апазоппого прибора значение чувствительности, при котором еще не происходит его самовозбуждения, что дает возможность максимально расширить диапазон частот принимаемых сигналов и дальность их обнаружения. Поэтому в приборе не предусмотрены какие-либо регулировки чувствительности или коэффициента усиления.

Основные технические характеристики счетчика частот CUB следующие:

Диапазон рабочих частот, ГГц................................................. 0,001—2,8

Входное сопротивление, Ом............................................................... 50

Максимальный входной сигнал, дБм (мВ).................................... 15 (50)

Частота опорного генератора, МГц ...................................................... 10

Дисплей:

тип................................................................ жидкокристаллический

организация .................................................. 9 дифр высотой 4,5 мм

Габариты, мй ........ л................................................................ 1)4х70х30

Корпус:

материал..................................................... штампованный алюминий

цвет.................................................................................... черный

Встроенные батареи:

тип ................. ..... ........... .... .............................. никель-кадмиевые

количество ................................................................................... 4

размер ........................................................................................ АА

время непрерывной работы, час ...................................................... 10

Питание:

напряжение, В .......................................................................9—11

потребляемый ток, мА ..................................................................110

Тестовый ЧМ приемник R10 INTERCEPTOR

Мощным средством для обнаружения подслушивающих устройств и перехвата радиопереговоров в ближней зоне является приемник R10 INTERCEPTOR фирмы Optoelectronics (рис. 5.14)

R10 измеряет девиацию сигналов (с широкой и узкой полосой), относительную величину сигнала, а в сочетании с декодером DC440 позволяет измерять сигнальные топы (CTCSS, DCS и DTMF). R10 может использоваться для любых измерений, требующих ЧМ демодуляции и подходит для проверки передатчиков метрового диапазона и сотовой связи, а в некоторых случаях может служить дешевой, малогабаритной заменой для сервисного монитора.

В отличие от приемников и сканеров, R10 принимает любые имеющиеся сильные сигналы. Настройка обычных приемников стабилизирована на определенной частоте с помощью внутреннего генератора. Приемник R10 настраивается но принимаемому сигналу. Достоинством этого является то, что для приема сигнала прибор не нужно настраивать на конкретную частоту, он может принимать любой ЧМ сигнал в диапазоне от 30 МГц до 2 ГГц. R10 работает автоматически и не требует вмешательства оператора.

114.jpg

Рис. 5.14 Тестовый приемник RIO INTERCEPTOR

Лучше всего приемник работает в близлежащей от передатчика зоне, где напряженность электромагнитного поля высока, но быстро падает с увеличением расстояния. В дальней же зоне напряженность ноля мала, но сохраняется практически неизменной на 01ромных расстояниях.

Реальное расстояние, на котором приемник может детектировать радиопередатчик, зависш ог фонового радиоизлучения в конкретной области и наличия других сильных сигналов. Проверки показали, что типовыми являются значения 6—250 м or передатчика MB или ДМВ мощностью 5 Вт. Таким образом R10 является одним из самых чувствигельных приборов для рабогы в ближней зоне. Это возможно благодаря его отличной чувствительности. Индикатор величины сигнала может служить для обнаружения местоположения скрытых передатчиков или подслушивающих устройств, установленных в комнате или автомобиле.

В отличие ог сканеров и приемников, которые должны быть настроены на определенную частогу или должны сканировать заданный диапазон частот, с помощью R10 можно прослушивать близлежащие переговоры по ЧМ связи, благодаря немедленному приему сильных сигналов независимо от их частоты.

Основные технические характеристики тестовою ЧМ приемника R10 INTERCEPTOR:

Диапазон рабочих часгог, МГц ........................................... ..... 30—2000

Модуляция:

вид ......................................................................................... ЧМ

девиация, кТц ............................................................................. 100

Диапазон звуковых частог, Гц................................................... 50—3000

Время настройки не более, с ................................................................ 1

Вход:

сопротивление, Ом ...................................................................... 50

чувствительность на частоте 100 МГц, дБм ...................................... 45

чувствительность на частого 1 ГГц, дБм........................................... 20

Максимальная чувстви1ельнос1ь, дБм. . ...... ...................................... 15

Питание

тип.... ........ . . встроенный блок пикель-кадмиевый аккумуляторов

напряжение, В .. .. .... ....... ....... .. . ....... ...................... ...... ..7,2

емкость, мАхч ... ... .... ......... .................................................... 600

время непрерывной работы, час .......................... ... 5

Корпус'

материал. . .... . . штампованный алюминий

цвет ................... ............. ................................................ черный

Размеры, мм .............. ....... ........... ... . .......... ................ .. 130х70х38

Профессиональный сканирующий приемник AR3000A

Сканирующий приемник AR3000A (рис 5.15) является одним из лучших мобильных сканирующих устройств на сегодняшний день. Надежность конструкции, выполненной на металлическом шасси, не оставляет сомнений. Расположение кнопок управления, ручек настройки, размеры жидкокристаллического индикаюра — все сделано для удобства управления. Диапазон частот от 100 кГц до 2 ГГц (без вырезов) при скорости сканирования и поиска 50 каналов/с позволяет утверждать, что равных AR3000A но соотношению цена/качество/произ-водительносгь нет.

По основным нарамеграм, таким как чувствительность, избирательность и диапазон приема, AR3000A находится на одной ступени со значительно более дорогими моделями (например, ICOM IC-R9000).

Высокий уровень чувсгвительности в диапазоне от 100 кГц до 2036 МГц достигается за счет использования 15 полосовых фильтров и 3 высокочастотных усилителей, в то время как другие приемники располагают лишь широкополосными усилителями. Это дает высокую чувствительность во всем диапазоне при отсутствии ингермодуляциоппых искажений.

Шаг настройки выбирается в диапазоне от 50 Гц до 999,95 кГц (кратно 50 Гц) с возможностью быстрою увеличения в 10 или уменьшения в 5 раз нажатием

115.jpg

Рис. 5.15 Профессиональный сканирующий приемник AR3000A

кнопки на панели управления. Вращающаяся ручка плавной настройки удобна при приеме сигнала SSB.

Встроенный интерфейс RS-232 позволяет осуществлять полное дистанционное управление с компьютера основными функциями приемника. Переключение в режим дистанционного управления производится при помощи переключателя на задней панели прибора.

Крупный жидкокристаллический индикатор расположен под удобным для наблюдения углом и отражает информацию о частоте, канале памяти, режимах поиска/сканирования, мощности принимаемого сигнала и дополнительных функциях. На дисплее отображается время таймера, позволяющего включать и выключать приемник в установленное время. Для работы в условиях недостаточной освещенности предусмотрена подсветка индикатора.

400 каналов памяти разбиты на 45 банка по 100 каналов в каждом. В каждом канале памяти хранится информация о типе сигнала, частоте, настройке аттенюатора и статусе захвата. Первый канал в каждом банке может быть установлен как приоритетный.

Таблица 5.1. Технические характеристики сканирующего приемника AR3000A

Х ар актеристика Значение
Диапазон рабочих частот 100 МГц-2036 МГц
Тип модуляции NMF.WFM.AM, USB, LSB.CW
Тип приемника Супергетеродин с 3-х кратным преобразованием для USB/LSB/CWI/AM/NFM и 4-х кратным для WFM
Число каналов 400 (4 банка по 100 каналов)
Скорость сканирования 50 каналов/с
Скорость поиска 50 каналов/с
Чувствительность приемника в диапазоне частот:

100 кГц - 2,5 МГц 2,5МГц- 1,8ГГц 1,8ГГц- 2,0 ГГц

10дБ5/М 12 дБ SINAD
SSB/CW AM NFM WFM
1,ОмкВ 3,2 мкВ - -
0,25 мкВ 1,ОмкВ 0,35 мкВ 1,ОмкВ
0,75 мкВ 3,0 мкВ 1,25мкВ З.ОмкВ
Избирательность приемника 2,4кГц/-6дБ,4,5кГц/-60дБ(и5В/Ь5В/С\\0
12 кГц/-6дБ, 25 кГц/-7 ОдБ (AM/NFM)
180 кГц/-6дБ, 800 кГц/-5 ОдБ (WFM)
Мощность звука 1,2 Вт при коэффициенте нелинейных искажений 10% (4 Ом) 0,7 Вт при коэффициенте нелинейных искажений 10% (8 Ом)
Питание 13,8 В постоя иного тока (потребляемый ток 500 мА)
Размеры 138х80х200 мм
Вес 1,2кг

Прибор оборудован энергонезависимой памятью. Вся информация, находящаяся в ней, остается без изменений даже при выключении питания благодаря встроенной литиевой батареи.

Приемник позволяет осуществлять программируемое сканирование с задержкой до пропадания сигнала и паузой, время которой составляет от 1 до 60 с и задается пользователем Технические характеристики сканирующего приемника АR3000А приведены в табл. 5. 1

Сканирующий приемник с панорамным индикатором АХ-700Е

Одно из основных достоинств сканирующего приемника АХ700 (рис 5 16) — наличие панорамного индикатора, позволяющего вести визуальное наблюдение за активностью диапазона шириной 1 МГц (250 кГц или 100 кГц, выбирается программно). Имеется возможность оперативной перестройки сканера на частоту с обнаруженной несущей. Прибор оснащен множеством эксклюзивных функций STANDARD, запоминающим устройством на 100 каналов и на 10 под-диапазонов для сканирования.

116.jpg

Рис. 5. 16. Сканирующий приемник АХ-700Е

В приборе предусмотрено четыре способа сканирования. > сканирование всего диапазона, > сканирование любою, заранее оговоренного, поддиапазона;

> сканирование частот, записанных в памяти, > сканирование определенных частот за вычетом хранящихся в памяти

Приемник имеет четыре режима сканирования:

> HOLD — при приеме сигнала сканирование прекращается;

> DELAY — при приеме сигнала сканирование останавливается до пропадания сигнала;

> AUDIO DELAY — при приеме звукового сигнала сканирование останавливается до пропадания сигнала;

> PAUSE — при приеме сигнала сканирование останавливается и возобновляется через 5 с.

Сканер имеет широкий непрерывный частотный диапазон от 50 МГц до 904,995 МГц и шаги настройки частоты 1,5, 10; 12,5; 20,25 кГц.

Для удобства работы имеются разъемы для подключения внешнего громкоговорителя и головных телефонов (последний размещен на передней панели) При необходимости можно записывать па магнитофон сообщения, передаваемые в контролируемом диапазоне частот.

Наличие энергонезависимой памяти, питание 13,8 В, малый вес делает этот приемник удобным в работе — вы можете использовать его в стационарных условиях и в любой момент взять с собой в дорогу.

Основные технические характеристики сканирующего приемника АХ-700Е'

Диапазон рабочих частот, МГц ............................................. . . 50 — 905

Тип модуляции.............................. AM, NFM (±50 кГц), WFM (±75 кГц)

Чувствительность AM, мкВ ................................................... . . 3

Чувствительность NFM, мкВ.......................................................... . 1,5

Чувствительность WFM, мкВ ............ .. .. .... .... .. .... ... . . 1

Стабильность частоты, % ......................................................... 0,0002

Селективность не менее, дБ ................ .............. ...... ............ . . .30

Шаг частоты, кГц .......................................................... 10; 12 5, 20, 254

Количество каналов ........................................... ......... ..... . 100

Число поддиапазонов сканирования.... ................................. 10

Напряжение питания, В .................................. ..................... 13,8±15%

Потребляемый ток, А ........................ ............ ..................... .

Диапазон рабочих температур, °С ....... . .... .. .. .............. . 0—50

Габаритные размеры, мм ............ .. ... .. . . ... .... ... . .... 180х75х180

Вес, кг....................................................... . .............. .... 2,1

5.2.2. Индикаторы электромагнитного излучения

Промышленные приборы обнаружения радиозакладок, кратко рассмо! репные в предыдущем разделе, стоят достаточно дорого (800— 1500 USD) и могу! оказаться вам не по карману. В принципе, использование специальных средств оправдано лишь тогда, когда специфика вашей деятельности может привлечь внимание конкурентов или криминальных группировок, и утечка информации может привести к фатальным последствиям для вашего бизнеса и даже здоровья. Во всех остальных случаях опасаться профессионалов промышленного шпионажа не приходится и пет необходимости тратить огромные средства на специальную аппаратуру Большинство ситуаций может свестись к банальному подслушиванию разговоров начальника, неверного супруга или соседа по даче При этом, как правило, используются радиозакладки кустарного производства, обнаружить которые можно более простыми средствами — индикаторами радиоизлучений. Изготовить эти приборы без труда можно самое гоячельпо В отличии от сканеров, индикаторы радиоизлучений регистрируют напряженность электромагнитного поля в конкретном диапазоне длин волн. Чувствительность их невысока, поэтому обнаружить источник радиоизлучения они могут только в непосредственной близости от него. Низкая чувствительность индикаторов напряженности поля имеет и свои положительные стороны — существенно уменьшается влияние мощных радиовещательных и других промышленных сигналов на качество обнаружения. Ниже мы рассмотрим несколько простых индикаторов напряженности электромагнитного поля KB, У KB и СВЧ диапазонов.

Простейшие индикаторы напряженности электромагнитного поля

Рассмотрим простейший индикатор напряженности электромагнитного поля в диапазоне 27 МГц. Принципиальная схема прибора приведена на рис. 5.17 Он состоит из антенны, колебательного контура L1C1, диода VD1, конденсатора С2 и измерительного прибора.

Работает устройство следующим образом. Через антенну на колебательный контур поступают ВЧ колебания. Контур отфильтровывает колебания диапазона 27 МГц из смеси частот. Выделенные колебания ВЧ детектируются диодом VD1, благодаря чему на выход диода проходят только положительные полуволны принимаемых частот. Огибающая этих частот представляет собой НЧ колебания. Остатки ВЧ колебаний фильтруются конденсатором С2. При этом через измерительный прибор потечет ток, который содержит переменную и постоянную составляющие. Измеряемый прибором постоянный ток примерно пропорционален напряженности поля, действующей в месте приема. Этот детектор можно выполнить в виде приставки к любому тестеру.

117.jpg

Рис. 5.17 Простейший индикатор напряженности поля диапазона 27 МГц

'Катушка L1 диаметром 7 мм с подстроечным сердечником имеет 10 витков провода ПЭВ-1 0,5 мм. Антенна выполнена из стальной проволоки длиной 50 см

Чувствительность прибора можно значительно повысить, если перед детектором установить усилитель ВЧ. Принципиальная схема такого устройства представлена на рис. 5.18. Эта схема, по сравнению с предыдущей, имеет более высокую чувствительность передатчика. Теперь излучение может быть зафиксировано на расстоянии несколько метров.

Высокочастотный транзистор VT1 включен по схеме с общей базой и работает в качестве селективного усилителя. Колебательный контур L1C2 включен в его коллекторную цепь. Связь контура с детектором осуществляется через

118.jpg

Риc 5.18 Индикатор с усилитйлем ВЧ


отвод от катушки L1 Конденсатор СЗ отфильтровывает высокочастотные составляющие Резистор R3 и конденсатор С4 выполняют функцию фильтра НЧ

Катушка L1 намотана на каркасе с подстроенным сердечником диаметром^ мм проводом ПЭВ-1 0,5 мм Антенна выполнена из стальной проволоки длиной около 1 м

Для высокочастотного диапазона 430 МГц можно также собрать очень простую конструкцию индикатора напряженности поля Принципиальная схема такого прибора приведена на рис 5 19, а Индикатор, схема которого показана на рис 519,6, позволяет определить направление на источник излучения

119.jpg

а) б) Рис 5 19 Индикаторы диапазона 430 МГц

Индикатор напряженности поля диапазона 1...200 МГц

Проверить помещение на наличие подслушивающих устройств с радиопередатчиком можно при помощи несложного широкополосного индикатора напряженности поля со звуковым генератором Дело в том, что некоторые сложные «жучки» с радиопередатчиком включаются на передачу только тогда, когда в помещении раздаются звуковые сигналы Такие устройства трудно обнаружить при помощи обычного индикатора напряженности, нужно постоянно разговаривать или включить магнитофон Рассматриваемый детектор имеет собственный источник звукового сигнала Принципиальная схема индикатора показана на рис. 5 20. В качестве поискового элемента использована объемная катушка L1 Ее достоинство, по сравнению с обычной штыревой антенной, заключается в более точной индикации места

1110.jpg

Рис. 5.20. Индикатор напряженности поля диапазона 1...200 МГц

установки передатчика. Сигнал, наведенный в этой катушке, усиливается двухкаскадным усилителем высокой частоты на транзисторах VT1, VT2 и выпрямляется диодами VD1, VD2. По наличию постоянного напряжения и его величине на конденсаторе С4 (в режиме милливольтметра работает микроамперметр М476-Р1) можно определить наличие передатчика и его местоположения.

Комплект съемных катушек L1 позволяет находить передатчики различной мощности и частоты в диапазоне от 1 до 200 МГц.

Генератор звука состоит из двух мультивибраторов. Первый, настроенный на частоту 10 Гц, управляет вторым, настроенным на частоту 600 Гц. В результате чего формируются пачки импульсов, следующие с частотой 10 Гц. Эти пачки импульсов поступают на транзисторный ключ VT3, в коллекторной цепи которого включена динамическая головка В1, размещенная в направленном боксе (пластмассовая труба длиной 200 мм и диаметром 60 мм).

Для более удачных поисков желательно иметь несколько катушек L1. Для диапазона до 10 МГц катушку L1 нужно намотать проводом ПЭВ 0,31 мм на пустотелой оправке из пластмассы или картона диаметром 60 мм, всего — 10 витков; для диапазона 10-100 МГц каркас не нужен, катушка наматывается проводом ПЭВ 0.6...1 мм, диаметр объемной намотки около 100 мм, число витков - 3...5; для диапазона 100-200 МГц конструкция катушки такая же, но она имеет всего один виток.

Для работы с мощными передатчиками можно использовать катушки меньшего диаметра.

Заменив транзисторы VT1, VT2 iia более высокочастотные, например КТ368 или КТ3101, можно поднять верхнюю границу частотного диапазона обнаружения детектора до 500 МГц.

Индикатор напряженности поля диапазона 0,95... 1,7 ГГц

В последнее время в составе радиозакладок все чаще используются передающие устройства сверхвысокочастотного (СВЧ) диапазона. Это обусловлено тем, что волны этого диапазона хорошо проходят через кирпичные и бетонные стены, а антенна передающего устройства имеет малые габариты при большой эффективности ее использования. Для обнаружения СВЧ излучения радиопе-редающего устройства, установленного в вашей квартире, можно использовать прибор, схема которого приведена на рис. 5.21.

Основные характеристики индикатора:

Диапазон рабочих частот, ГГц................................................... 0,95 —1,7

;Уровень входного сигнала, мВ ................................................... 0,1 —0,5

Коэффициент усиления СВЧ сигнала, дБ..................................... 30 — 36

Входное сопротивление, Ом................................................................ 75

Потребляемый ток не более, мА .......................................................... 50

Напряжение питания, В ...........................................................+9—20 В

Выходной СВЧ сигнал с антенны поступает на входной разъем XW1 детектора и усиливается СВЧ усилителем па транзисторах VT1—VT4 до уровня 3...7 мВ. Усилитель состоит из четырех одинаковых каскадов, выполненных на транзисторах, включенных по схеме с общим эмиттером, с резонансными связями. Линии L1—L4 служат коллекторными нагрузками транзисторов и имеют индуктивное сопротивление 75 Ом на частоте 1,25 ГГц. Разделительные конденсаторы СЗ, С7, С 11 имеют емкостное сопротивление 75 Ом на частоте 1,25 ГГц. Такое построение усилителя позволяет добиться максимального усиления каскадов, однако неравномерность коэффициента усиления в рабочей полосе частот достигает 12 дБ. К коллектору транзистора VT4 подключен амплитудный детектор на диоде VD5 с фильтром R18C17. Продетектированный сигнал усиливается усилителем постоянного тока на ОУ DA1. Его коэффициент усиления по напряжению равен 100. К выходу ОУ подключен стрелочный индикатор, показывающий уровень выходного сигнала. Подстроечным резистором R26 балансируют ОУ так, чтобы компенсировать начальное напряжение смещения самого ОУ и собственные шумы СВЧ усилителя.

На микросхеме DD1, транзисторах VT5, VT6 и диодах VD3, VD4 собран преобразователь напряжения для питания ОУ. На элементах DD1.1, DD1.2 выполнен задающий генератор, вырабатывающий прямоугольные импульсы с частотой следования около 4 кГц. Транзисторы VT5 и VT6 обеспечивают усиление по мощности этих импульсов. На диодах VD3, VD4 и конденсаторах С13, С 14 собран умножитель напряжения. В результате на конденсаторе С 14 формируется отрицательное напряжение — 12 В при напряжении питания усилителя СВЧ +15 В. Напряжения питания ОУ сгабилизированы на уровне 6,8 В стабилитронами VD2 и VD6..

1111.jpg

Рис. 5.21. Индикатор напряженности поля диапазона 0,95. .1,7 ГГц

Элементы индикатора размещены на печатной плате из двустороннего фоль-гированного стеклотекстолита толщиной 1,5 мм. Плата заключена в латунный экран, к которому припаяна по периметру. Элементы находятся со стороны печатных проводников, вторая, фольгированная, сторона платы служит общим проводом.

Линии LI —L4 представляют собой отрезки медного посеребренного провода длиной 13 и диаметром 0,6 мм, которые впаяны в боковую стенку латунного экрана на высоте 2,5 мм над платой. Все дроссели — бескаркасные с внутренним диаметром 2 мм, намотаны проводом ПЭЛ 0,2 мм. Отрезки провода для намотки имеют длину 80 мм. Входным разъемом XW1 служит кабельный (75 Ом) разъем СГС.

В устройстве применены постоянные резисторы МЛТ и подстроечные СП5-1ВА, конденсаторы КД1 (С4, С5, С8-С10, С 12, С 15, С 16) диаметром 5 мм с отпаянными выводами и КМ, КТ (остальные) Оксидные конденсаторы — К53. Электромагнитный индикатор с током полного отклонения 0,5...1 мА — от любого магнитофона

Микросхему К561ЛА7 можно заменить на К176ЛА7, К1561ЛА7, К553УД2 -на К153УД2 или КР140УД6, КР140УД7. Стабилитроны - любые кремниевые с напряжением стабилизации 5,6...6,8 В (КС156Г, КС168А). Диод VD5 2А201А можно заменить на ДК-4В, 2А202А или ГИ401А, ГИ401Б.

Налаживание устройства начинают с проверки цепей питания. Временно отпаивают резисторы R9 и R21. После подачи ноложи1ельного напряжения питания +12 В измеряют напряжение па конденсаторе С 14, которое должно быть не менее -10 В. В противном случае по осциллографу убеждаются в наличии переменного напряжения на выводах 4 и 10 (11) микросхемы DD1. Если напряжение отсутствует, убеждаются в исправности микросхемы и правильности монтажа. Если переменное напряжение присутствует, проверяют исправность транзисторов VT5, VT6, диодов VD3, VD4 и конденсаторов С13, С14.

После налаживания преобразователя напряжения припаивают резисторы R9, R21 и проверяют напряжение на выходе ОУ и подстройкой сопротивления резистора R26 устанавливают нулевой уровень.

После этого на вход устройства подают сигнал напряжением 100 мкВ и частотой 1,25 ГГц с генератора СВЧ. Резистором R24 добиваются полного отклонения стрелки индикатора РА1.

Индикатор СВЧ излучений

Прибор предназначен для поиска СВЧ излучений и обнаружения маломощных СВЧ-передатчиков выполненных, например, на диодах Ганна. Он перекрывает диапазон 8...12 ГГц.

Рассмотрим принцип работы индикатора. Простейшим приемником, как известно, является детекторный. И такие приемники диапазона СВЧ, состоящие из приемной антенны и диода, находят свое применение для измерения СВЧ мощности. Самым существенным недостатком является низкая чувствительность таких приемников. Чтобы резко повысить чувствительность детектора, не

Рис. 5.22 СВЧ приемник с модулируемой задней стенкой волновода

1112.jpg

усложняя СВЧ головки, используется схема детекторного СВЧ приемника с модулируемой задней стенкой волновода (рис. 5.22).

СВЧ головка при этом почти не усложнилась, добавился только модуляторный диод VD2, a VD1 остался детекторным.

С некоторым приближением можно считать, что когда диод VD2 закрыт, он не влияет па процессы в волноводе, а когда открыт — полностью закорачивает волновод, т.е. играет роль короткозамкпутой задней стенки.

Рассмотрим процесс детектирования. СВЧ сигнал, принятый рупорной (или любой другой, в нашем случае — диэлектрической) антенной, поступает в волновод. Поскольку задняя стенка волновода короткозамкнута, в волноводе устанавливается режим стоячих волн. Причем, если детекторный диод будет находиться на расстоянии полуволны от задней стенки, он будет в узле (т.е. минимуме) поля, а если на расстоянии четверти волны — то в пучности (максимуме). То есть, если мы будем электрически передвигать заднюю стенку волновода на четверть волны (подавая модулирующее напряжение с частотой 3 кГц на VD2), то на VD1, вследствие перемещения его с частотой 3 кГц из узла в пучность СВЧ поля, выделится НЧ сигнал с частотой 3 кГц, который может быть усилен и выделен обычным усилителем НЧ.

Таким образом, если на VD2 подать прямоугольное модулирующее напряжение, то при попадании в СВЧ поле с VD1 будет снят продетектированньш сигнал той же частоты. Этот сигнал будет противофазен модулирующему (это свойство с успехом будет использовано в дальнейшем для выделения полезного сигнала из наводок) и иметь очень малую амплитуду.

То есть вся обработка сигнала будет производиться на НЧ, без дефицитных СВЧ деталей.

Схема обработки приведена на рис. 5.23. Питается схема от источника 12В и потребляет ток около 10 мА.

1113.jpg

Рис.5.23. Схема обработки СВЧ сигнала

Резистор R3 обеспечивает начальное смещение детекторного диода VD1. Принятый диодом VD1 сигнал усиливается трехкаскадным, усилителем на транзисторах VT1 —VT3. Для исключения помех питание входных цепей >осуществ--ляется через стабилизатор напряжения на транзисторе VT4. . ,

На микросхеме DD2 собран генератор импульсов частотой 3 кГц,' которыми через резистор R22 модулируется диод VD2. -Модулирующее напряжение в прямой (вывод 8 DD2) и инверсной (вывод 9 DD2) фазах через R8 поступает на резистор R11 «Чувствительность». Этим резистором устанавливается такая фаза и амплитуда компенсирующего напряжения на движке R11, чтобы свести к нулю наводки на диод VD1. В самом деле, на VD1 так или иначе будет наведено (через паразитные связи) модулирующее-напряжение 3'кГц (все-таки па VD2 почти 1 В, а полный сигнал снимается с VD1 и имеет амплитуду 1 мкВ и менее). Но вспомним, что полезный сигнал (от СВЧ поля) с диода VD1 и модулирующее напряжение на диоде VD2 противофазны. Именно поэтому движок R11 можно установить в такое положение, при котором наводки будут подавлены. Подключите осциллограф к выходу ОУ DA2 и, вращая ползунок резистора R11, вы увидите, как происходит компенсация.

С выхода предварительного усилителя VT1—VT3 сигнал поступает па выходной усилитель на микросхеме DA2. Обратите внимание на то, что между коллектором VT3 и входом DA2 стоит RC-цепочка R17C3 (или С4 в зависимости от состояния ключей DD1) с полосой пропускания всего 20 Гц(!). Это так называемый цифровой корреляционный фильтр. Мы знаем, что должны принять прямоугольный сигнал частотой 3 кГц, в точности равной модулирующей, и в нротивофазе с модулирующим сигналом. Цифровой фильтр как раз и использует это знание — когда должен приниматься высокий уровень полезного сигнала, подключается конденсатор СЗ, а когда низкий — С4. Таким образом, на СЗ и С4 за несколько периодов накапливаются верхнее и нижнее значения полезного сигнала, в то время как шумы со случайной фазой отфильтровываются. Цифровой фильтр улучшает соотношение сигнал/шум в несколько раз, соответственно повышая и общую чувствительность детектора. Становится возможным уверенно обнаруживать сигналы, лежащие ниже уровня шума (это общее свойство корреляционного приема).

С выхода DA2 сигнал через еще один цифровой фильтр R5C6 (или С8 в зависимости от состояния ключей DD1) поступает на интегратор-компаратор DA1, напряжение па выходе которого при наличии полезного сигнала на входе (VD1) становится равным примерно напряжению питания. Этим сигналом включается светодиод HL2 «Тревога» и головка ВА1. Прерывистое тональное звучание головки ВА1 и мигание светодиода HL2 обеспечивается работой двух мультивибраторов с частотами около 1 и 2 кГц, выполненными на микросхеме DD2, и транзистором VT5, шунтирующим базу VT6 с частотой работы мультивибраторов.

Конструктивно прибор состоит из СВЧ головки и платы обработки, которая может быть размещена как рядом с головкой, так и отдельно.

5.2.3. Средства обнаружения несанкционированного подключения к телефонной линии

Ежедневно, говоря по телефону, вы даже не задумываетесь о" том, что вас могут подслушивать. В результате содержание самых важных разговоров (деловая, стратегически ценная, компрометирующая информация) становится известным именно тем людям, которые не должны ничего о них знать. Как только ваши телефонные переговоры заинтересуют кого-либо, находится простое решение — подслушать их. Каждый раз, когда вы поднимаете трубку телефона у себя дома или в офисе, на телефонной линии включаются специальные радиопередатчики или диктофоны; для того, чтобы прослушать ваш разговор, достаточно просто подключить к ней параллельный аппарат или телефонную трубку.

Существуют различные системы для предотвращения несанкционированного прослушивания телефонных переговоров, факсов и модемной связи. Принцип действия таких систем заключается в том, что они подавляют нормальную работу телефонных закладок всех типов (последовательных и параллельных) и диктофонов, установленных на вашей телефонной линии от места установки до АТС. Результатом работы устройств является «размывание спектра» излучения телефонной закладки, что делает невозможным прием информации от нее, а также «забивание» системы АРУ звука и выведение из строя системы VOX (система автоматического включения при наличии на линейном входе сигнала определенного уровня) диктофонов, подключенных к линии.

В результате становится крайне затруднительно перехватить ваши телефонные разговоры обычными средствами прослушивания как зарубежного, так и отечественного производства.

Система безопасности телефонной линии «Барьер» (рис. 5.24) разработана специально для того, чтобы исключить любую возможность подслушивания ваших телефонных переговоров. «Барьер» включается между телефонным аппаратом и линией (телефонной розеткой) и автоматически обеспечивает максимальную защиту от подслушивающих и записывающих устройств любого тина. Кроме того, с помощью специальной системы индикации вам станет известно о попытках подключения кого-либо и чего-либо к вашей телефонной линии. Используя систему «Барьер», нет необходимости заботиться о проведении конфиденциальных встреч, вы можете спокойно говорить но телефону на любые темы.

Система «Барьер» обеспечивает:

> подавление подслушивающих устройств (телефонных радиозакладок), несанкционированно подключенных к телефонной линии, не зависимо от их типов и способов подключения (в том числе с индуктивным съемом);

> подавление автоматических звукозаписывающих устройств, подключенных к телефонной линии и активизируемых поднятием телефонной трубки;

> подавление звукозаписывающих устройств с ручным управлением записи;

1114.jpg

Рис 5 24. Система безопасности телефонной линии «Б

> блокировку запуска диктофонов, активируемых юлос телефонной трубке,

> защиту телефонною аннарага (в режиме «опущенной  информации методами «ВЧ навязывания», микрофон

> блокирование работы микрофонов, работающих но ie

> блокирование работы подключенною к юлефонной ли

телефонного аннарага или телефонной 1рубки, > цифровую индикацию напряжения телефонной лини!

сечки;

> возможность подключения к телефонной линии звуко-mi наратуры (диктофонов) для архивации юлефонпых перс

> аудиовизуальную индикацию несанкционированною но ройств съема информации, изменяющих параметры гелес) Основные технические характеристики сисгемы «Барьер»:

Уровень маскирующего шума не более, В ..... . ....... ........ ...

Напряжение отсечки не более, В ............. .. . . ........ ...

Напряжение питания, В/Гц ............................ .... ................

Потребляемая мощность не более, Вт...........................................

Габаритные размеры, мм ....................................................... 200х

5.3. Устройства и способы защиты информации


5.3.1. Рекомендации по комплексной защите информации

Для противодействия конкурирующим фирмам и преступным группам необходимо, прежде всего, определить порядок ведения деловых бесед по телефону, определить круг лиц, допускаемых к тем или иньш. секретам, запретить сотрудникам вести служебные разговоры по домашним телефонам. Для передачи материалов, содержащих коммерческую тайну, использовать только ус-юйчи-вые каналы связи (с нарочным, с использованием компьютерных шифраторов)

Если вы почувствовали, что за вами установлен контроль (рис. 5.25), во время беседы используйте систему условностей и сознательной дезинформации. Никогда не называйте фамилию, отчество собеседника, если это позволяет этикет. Назначая место и время встречи, переходите на условности, которые должны органически вписываться в контекст вашего разговора. Приучите к определенному порядку ведения телефонных переговоров членов вашей семьи: они не должны сообщать никому о том, где вы находитесь и когда вернетесь домой.

1115.jpg

Рис. 5.25. Если вы почувствовали, что за вами установлен контроль, во время беседы используйте систему условностей и сознательной дезинформации

При шантаже преступными группами не пытайтесь тотчас же звонить в милицию. Целесообразно «взять паузу» и, убедившись, что за вами нет слежки, позвонить с телефона-автомата в соответствующую Организацию, причем лучше всего, чтобы это сделал ваш друг и, не называя истинно^ причины, организовал встречу (помните, что телефоны милиции тоже могут прослушиваться).

Для защиты информации могут использоваться различные электронные устройства. В настоящее время наиболее широкое распространение нашли генераторы акустического шума отечественного и зарубежного производства. Ниже мы расскажем о некоторых промышленных образцах и простых самодельных устройствах, используемых для защиты информации.

5.3.2. Генераторы шума

Для защиты акустической информации, например речи, используют генераторы шума. В широком смысле под шумом понимают помехи, представляющие собой смесь случайных и кратковременных периодических сигналов. В узком смысле под шумом понимают так называемый белый шум, характеризующийся тем, что его амплитудный спектр распределен по нормальному закону, а спектральная плотность мощности постоянна для всех частот. Примером белого шума является тепловой шум резистора.

Для защиты переговоров от прослушивания используют генераторы акустической шумовой помехи — белого шума. Они позволяют замаскировать полезную информацию на фоне шума. В отличие от однотональной или многотопаль-ной периодической помехи, музыки, шума двигателя и т.п., которые путем специальной обработки сигнала могут быть отфильтрованы, помехи типа белого шума практически не поддаются полной фильтрации и поэтому являются наиболее эффективными для закрытия полезной информации. Кроме того, акустические генераторы белого шума эффективны еще и тем, что воздействуют непосредственно па входные низкочастотные тракты подслушивающих систем (микрофоны) независимо от особенностей их схемотехники и принципов передачи информации.

Для защиты от утечки информации по каналам побочных электромагнитных излучений электронно-вычислительной техники используют генераторы шума, излучающие активную широкополосную радиопомеху, воздействующую на входные цени радиоприемных устройств. Аналогичные приборы используются для защиты от утечки информации по электрической сети и телефонным линиям.

Генератор белого шума промышленного производства

В качестве примера промышленного прибора кратко рассмотрим генератор белого шума ANG-2000, внешний вид которого показан на рис. 5.26. Основные технические характеристики генератора ANG-2000:

Диапазон частот акустического шума, Гц ................................. 250—5000

Минимальное сопротивление нагрузки, Ом ........................................... 1

Напряжение па нагрузке 6 Ом, В ................................................... 0—14

1116.jpg

Рис. 5.26. Генератор белого шума ANG-20«u

Напряжение питания,В................................................................12—18

Потребляемый ток не более А ............. . ........... ............ . ................. 2

Габаритные размеры, мм....................................................... .43х152х254

Генератор шума несложно изготовить и самостоятельно. Ниже мы рассмотрим несколько простых схем таких приборов.

Генераторы шума на транзисторах

Первый генератор шума (рис. 5.27) стоит из двух мультивибраторов. На транзисторах VT1, VT2 выполнен обычный симметричный мультивибратор, частоту следования импульсов которого можно изменять подстроечным резистором R2. Правда, генерирует он не обычные прямоугольные импульсы, а колебания более сложной формы. Это объясняется сильной связью через конденсатор СЗ сравнительно большой емкости со вторым мультивибратором — ждущим (его называют одновибратор), собранном на транзисторах VT3 и VT4. Длительность импульсов этого мультивибратора изменяют подстроечным резистором R10.

Поскольку времязадающий конденсатор С4 зашунтирозан резистором R9, результирующий сигнал, снимаемый с резистора R11 и поступающий через конденсатор С5 на усилитель звуковой частоты, воспринимается на слух как ясно выраженный шум. Его характер точнее подбирают подстроечными резисторами R2 и R10.

1117.jpg

Рис. 5.27. Генератор шума на транзисторах

1118.jpg

5 28 Имитатор сигнала глушения радиостанций

Если верхние по схеме выводы подстроенного резистора R2 отсоединить от источника питания и подключить к третьему мультивибратору (рис 5 28), генерирующему сигналы инфранизкой частоты, шум станет модулированным этой частотой Вот теперь звук будет почти полной имитацией сигнала глушения радиопередач, которые в свое время приходилось прослушивать в эфире на коротковолновом диапазоне.

В обоих устройствах допустимо использовать оксидные конденсаторы на напряжение не менее 10 В, остальные конденсаторы — любого типа (БМ, МБМ, КЛС, КМ) Транзисторы - любые из серий МП25, МП26, МП39-МП42, под-строечные резисторы - СПЗ-3, СПЗ-29, СПЗ-29М, постоянные - МЛТ мощностью 0,25 Вт Питать генераторы шума можно от батарей «Крона», «Корунд», двух последовательно соединенных 3336Л либо от сетевого стабилизированного источника постоянного тока напряжением от 4 до 10 В

5.3.3. Устройства защиты от лазерных средств съема информации

Простой модулятор стекла

Для скрытности проведения перехвата речевых сообщений из помещений могут быть использованы устройства, в которых передача информации осуществляется в оптическом диапазоне Чаще всего используется невидимый для простого глаза инфракрасный диапазон излучения.

Наиболее сложными и дорогостоящими средствами дистанционного перехвата речи из помещений являются лазерные устройства Принцип их действия заключается в посылке зондирующего луча в направлении источника звука и приеме этого луча после отражения от каких-либо предметов, например, оконных стекол, зеркал и т д Эти предметы вибрируют под действием окружающих звуков и модулируют своими колебаниями лазерный луч Приняв отраженный от них луч можно восстановить модулирующие колебание

Исходя из этого, рассмотрим один из достаточно простых, по очень эффективных способов защиты от лазерных устройств. Он заключается в том, чтобы с помощью специальных устройств сделать амплитуду вибрации стекла много большей, чем вызванную голосом человека. При этом на приемной стороне возникают трудности в детектировании речевого сигнала.

Вашему вниманию предлагается простая схема защиты от лазерных средств съема информации (рис. 5.29). В качестве модулятора с частотой 50 Гц используется обычное малогабаритное реле постоянного тока РЭС22, РЭС9. Выводы обмотки подключаются к источнику переменного тока напряжением чуть ниже порога срабатывания. Реле жестко кренятся к стеклу эноксидным клеем. За счет разности фаз подводимых к реле К1 и К2 напряжений и неидентичности порогов срабатывания этих реле удается получить случайные (хаотические) колебания стекла.

1119.jpg

Рис. 5.29 Модулятор стекла

Многочастотный генератор

Фильтрация периодического сигнала не представляет особого труда и может быть выполнена с помощью простого режекторпого фильтра. А вот использование многочастотпой помехи увеличивает вероятность закрытия полезной информации, т.к. необходимо применение нескольких, в зависимости от количества используемых частот, точно настроенных фильтров. И чем больше количество частот в мпогочастотной помехе, тем более сложно выделить необходимую информацию.

Многочастотный генератор, схема которого изображена на рис. 5.30, можно использовать в качестве генератора шума и устанавливать на стекла и рамы (выходным элементом здесь является пьезокерамический излучатель ZQ1). Практически, это RC-мультивибратор па элементах DD3.1, DD3.2, частота которого регулируется включением дополнительных резисторов R2—R9 параллельно основному R1. Таким образом, частота на выходе увеличивается соответственно уменьшению общего сопротивления резисторов.

Изменение тональности происходит циклически с периодом в восемь тактов, при этом с каждым тактом частота может не обязательно последовательно уменьшаться или увеличиваться, значение ее для каждого такта выбирается произвольно, подбором номиналов R2—R9 соответствующим образом.

Переключение резисторов обеспечивает мультиплексор DD1, в соответствии с двоичным кодом, поступающим на его входы «I», «2>>, «4s> со счетчика DD2. Длительность звучания каждого такта и скорость смены тактов определяется

1120.jpg

Рис. 5.30. Многочастотный генератор

быстротой работы мультиплексора, а следовательно частотой тактового генератора на элементах DD3.4, DD3.5, импульсы от которого поступают на счетный вход счетчика DD2. Скорость изменения тактов можно регулировать резистором R11.

Если требуется в определенном такте сделать паузу (во время действия этого такта на выходе устройства будет логический нуль), нужно соответствующий вывод мультиплексора соединить не с одним из резисторов R2—R9, а с плюсом питания, а соответствующий резистор не устанавливать.

5.3.4. Защита от несанкционированного использования телефонной линии

Устройство защиты от несанкционированного подключения к телефонной линии

Устройство защиты от несанкционированного подключения к телефонной линии предназначено для кодирования линии индивидуальным одно-, двух-, трехзначным кодом и применяется в тех случаях, когда имеется возможность установить устройство защиты в щитке, колодце, т.е. как можно дальше от охраняемого телефонного аппарата (в идеальном случае — на выходных клеммах АТС). Система охраняет линию «за собой».

1121.jpg

Рис. 5.31. Устройство защиты телефона

При этом все посылки вызова, пришедшие с АТС, беспрепятственно допускаются к телефону), но для подключения к линии (ведения разговора, набора номера) на диске телефона (клавиатуре) необходимо набрать индивидуальный код.

Схема системы приведена на рис. 5.31. Устройство собрано на дискретных общедоступных элементах и ИМС серии 561 с микропотреблением в статическом режиме. Вся схема питается от телефонной линии. В режиме ожидания потребление не превышает 10...20 мкА, в режиме приема вызова или обработки кода - 150...200 мкА.

В состав устройства входят:

> узел обработки импульсов вызова на элементах DD1.1, DD1.2;

> узел приема кода на элементах DD1.3, DD1.4;

> ключ включения телефона А1;

> дешифратор кода А2;

> узел питания на элементах VD7, R3, С6, VD8;

> узел питания напряжением 60 В на элементах VD10, R8, VD9, С7, R7,

VD11-VD13.

Рассмотрим работу системы защиты.

Исходящая связь

При снятии трубки с телефона, подключенного в любом месте охраняемой части линии, в телефоне будет отсутствовать сигнал готовности станции (425 Гц). После набора соответствующего кода на диске (клавиатуре) телефона и обработки его узлом приема кода DD1.3, DD1.4 на выходе 4 дешифратора А2 появится уровень логической «I», который через ключ А1 подключит телефон к линии (если код набран правильно).

Если код набран неправильно, система защиты блокируется на время 15...30 с, после чего можно повторить набор кода. При включении ключа А1 телефон работает в обычном режиме, обеспечивая набор номера и связь. Система вновь входит в режим охраны через 10... 20 с после того, как трубка будет опущена на аппарат.

Входящая связь

Любая посылка вызова частотой 25 Гц и напряжением 90... 120 В, пришедшая от АТС, напрямую на телефон не поступает, так как ключ А1 в исходном состоянии заперт. После обработки сигнала вызова элементами DD1.1, DD1.2 с небольшой задержкой, определяемой номиналами элементов С2, СЗ, на выходе 4 DD1.2 появится логическая «I», которая через диод VD5 открывает ключ А1 только на время вызова. При снятии трубки с телефонного аппарата входной узел запирается через диод VD4, и далее для подключения телефона к линии и ведения разговора необходимо вновь набрать индивидуальный код.

Таким образом, система защиты блокирует подключение к охраняемому участку линии любых телефонных аппаратов без знания кода. Дешифратор может быть выполнен одно-, двух-, трехзначным.

Раэм»р плапмцяо^ф 60 мм, подключение к линии осуществляется тремя разъемами. Единственным условием является использование телефонных аппаратов II и III группы сложности (с потреблением от линии не более 50... 80 мкА).

Простейшее защитное устройство

В тех случаях, когда вы хотите защигиться от несанкционированного подключения к телефонной линии более просгым способом, можно воспользоваться схемой, представленной на рис. 5.32.

1122.jpg

Рис. 5.32. Простейшее защитное устройство

Это устройство блокирует как набор номера, так и вызывной сигнал. Его удобно выполнить в виде отдельной вилки, подключаемой вместо телефонного аппарата (например, при длительном вашем отсутствии).

Блокировка параллельного телефона

Предлагаемое релейно-конденсаторное устройство позволяет исключить прослушивание телефонного разговора с параллельно включенного телефонного аппарата. Работа его основана на использовании постоянного тока, протекающего через телефонный аппарат при снятой телефонной трубке (рис. 5.33).

Контакты К2.1 и К1.1 — нормальнозамкнутые. Конденсаторы С1 и С2 обеспечивают прохождение переменной составляющей тока при вызове и во время разговорного соединения. При выборе номиналов конденсаторов важно не допустить, чтобы резонансная частота колебательного контура обмотка реле-конденсатор была равной 25 Гц (частота сигнала вызова) и 450 Гц (частота сигнала зуммера станции.

1123.jpg

Рис. 5.33. Блокировка параллельного телефона

В качестве реле К1 и К2 подойдут любые с током срабатывания 25—30 мА, имеющие нормалыюзамкиутую контактную пару, например РЭС49.